
 

Machine Learning For Data Science 

Unit I 

Decision Analytic Thinking I: What Is a Good Model? 

Recall from the beginning of Chapter 5: as a manager at MegaTelCo, you wanted to 

assess whether the model my consulting firm had produced was any good. Overfitting 

aside, how would you go about measuring that? 

For data science to add value to an application, it is important for the data scientists and 

other stakeholders to consider carefully what they would like to achieve by mining data. 

This sounds obvious, so it is sometimes surprising how often it is ignored. Both data 

scientists themselves and the people who work with them often avoid—perhaps without 

even realizing it—connecting the results of mining data back to the goal of the under‐ 

taking. This may manifest itself in the reporting of a statistic without a clear under‐ 

standing of why it is the right statistic, or in the failure to figuring out how to measure 

performance in a meaningful way. 

We should be careful with such a criticism, though. Often it is not possible to measure 

perfectly one’s ultimate goal, for example because the systems are inadequate, or because 

it is too costly to gather the right data, or because it is difficult to assess causality. So, we 

might conclude that we need to measure some surrogate for what we’d really like to 

measure. It is nonetheless crucial to think carefully about what we’d really like to meas‐  

ure. If we have to choose a surrogate, we should do it via careful, data-analytic thinking. 

A challenge with writing a chapter on this topic is that every application is different. We 

cannot offer a single evaluation metric that is “right” for any classification problem, or 

regression problem, or whatever problem you may encounter. Nevertheless, there are 

various common issues and themes in evaluation, and frameworks and techniques for 

dealing with them. 

We will work through a set of such frameworks and metrics for tasks of classification 

(in this chapter) and instance scoring (e.g., ordering consumers by their likelihood of 

responding to an offer), and class probability estimation (in the following chapter). The 

specific techniques should be seen as examples illustrating the general concept of think‐ 

ing deeply about the needs of the application. Fortunately, these specific techniques do 

apply quite broadly. We also will describe a very general framework for thinking about 

evaluation, using expected value, that can cover a very wide variety of applications. As 

we will show in a later chapter, it also can be used as an organizational tool for data- 

analytic thinking generally, all the way back to problem formulation. 

Evaluating Classifiers 
Recall that a classification model takes an instance for which we do not know know the 

class and predicts its class. Let’s consider binary classification, for which the classes often 

are simply called “positive” and “negative.” How shall we evaluate how well such a model 



 

performs? In Chapter 5 we discussed how for evaluation we should use a holdout test 

set to assess the generalization performance of the model. But how should we measure 

generalization performance? 
 

Sidebar: Bad Positives and Harmless Negatives 

In discussing classifiers, we often refer to a bad outcome as a “positive” example, and a normal or good outcome as 

“negative.” This may seem odd to you, given the everyday definitions of positive and negative. Why, for example, is a 

case of fraud considered positive and a legitimate case considered negative? This terminology is conventional in many 

fields, including machine learning and data mining, and we will use it throughout this book. Some explanation may be 

useful to avoid confusion. 

It is useful to think of a positive example as one worthy of attention or alarm, and a negative example as uninteresting 

or benign. For example, a medical test (which is a type of classifier) performed on a biological sample tries to detect 

disease or an unusual condition by examining certain aspects of the sample. If the test comes back positive it means 

the disease or condition is present; if the test is negative there is no cause for alarm and usually no need for treatment. 

Similarly, if a fraud detector finds unusual activity on a customer account and decides there is cause for alarm, this is 

called a positive. On the other hand, negatives (accounts with only legitimate activity) are prof‐ itable but from a fraud 

detection perspective they are unworthy of attention. 

There are advantages to maintaining this general orientation rather than redefining the meaning of positive and 

negative for every domain we introduce. You can think of a classifier as sifting through a large population consisting 

mostly of negative. 

interesting cases—looking for a small number of positive instances. By convention, then, the positive class is often 

rare, or at least rarer than the negative class. In consequence, the number of mistakes made on negative examples (the 

false positive errors) may dom‐ inate, though the cost of each mistake made on a positive example (a false negative 

error) will be higher. 

Plain Accuracy and Its Problems 

Up to this point we have assumed that some simple metric, such as classifier error rate 

or accuracy, was being used to measure a model’s performance. 

Classification accuracy is a popular metric because it’s very easy to measure. Unfortu‐ 

nately, it is usually too simplistic for applications of data mining techniques to real  

business problems. This section discusses it and some of the alternatives. 

The term “classifier accuracy” is sometimes used informally to mean any general meas‐ 

ure of classifier performance. Here we will reserve accuracy for its specific technical 

meaning as the proportion of correct decisions: 

 
 Number of correct decisions made 

Total number of decisions made 

 
This is equal to 1–error rate. Accuracy is a common evaluation metric that is often used 

in data mining studies because it reduces classifier performance to a single number and 

it is very easy to measure. Unfortunately, it is simplistic and has some well-known 

accuracy = 



 

problems (Provost, Fawcett, & Kohavi, 1998). To understand these problems we need 

a way to decompose and count the different types of correct and incorrect decisions 

made by a classifier. For this we use the confusion matrix. 

The Confusion Matrix 

To evaluate a classifier properly it is important to understand the notion of class con‐ 

fusion and the confusion matrix, which is one sort of contingency table. A confusion 

matrix for a problem involving n classes is an n × n matrix with the columns labeled 

with actual classes and the rows labeled with predicted classes. Each example in a test 

set has an actual class label as well as the class predicted by the classifier (the predicted 

class), whose combination determines which matrix cell the instance counts into. For 

simplicity we will deal with two-class problems having 2 × 2 confusion matrices. 

A confusion matrix separates out the decisions made by the classifier, making explicit 

how one class is being confused for another. In this way different sorts of errors may be 

dealt with separately. Let’s differentiate between the true classes and the classes predicted  

by the model by using different symbols. We will consider two-class problems, and will 

denote the true classes as p(ositive) and n(egative), and the classes predicted by the 

model (the “predicted” classes) as Y(es) and N(o), respectively (think: the model says 

“Yes, it is a positive” or “No, it is not a positive”). 

Table 7-1. The layout of a 2 × 2 confusion matrix showing the names of the correct 

predictions (main diagonal) and errors (off-diagonal) entries. 

Y True positives False positives 

N False negatives  True negatives 

In the confusion matrix, the main diagonal contains the counts of correct decisions.  

The errors of the classifier are the false positives (negative instances classified as pos‐ 

itive) and false negatives (positives classified as negative). 

Problems with Unbalanced Classes 

As an example of how we need to think carefully about model evaluation, consider a 

classification problem where one class is rare. This is a common situation in applica‐ 

tions, because classifiers often are used to sift through a large population of normal or 

uninteresting entities in order to find a relatively small number of unusual ones; for 

example, looking for defrauded customers, checking an assembly line for defective parts,  

or targeting consumers who actually would respond to an offer. Because the unusual or 

interesting class is rare among the general population, the class distribution is unbal‐ 

anced or skewed (Ezawa, Singh, & Norton, 1996; Fawcett & Provost, 1996; Japkowicz & 

Stephen, 2002). 

p n 



 

Unfortunately, as the class distribution becomes more skewed, evaluation based on ac‐ 

curacy breaks down. Consider a domain where the classes appear in a 999:1 ratio. A 

simple rule—always choose the most prevalent class—gives 99.9% accuracy. Presumably 

this is not satisfactory if a nontrivial solution is sought. Skews of 1:100 are common in 

fraud detection, and skews greater than 1:106 have been reported in other classifier 

learning applications (Clearwater & Stern, 1991; Attenberg & Provost, 2010). Chap‐ 

ter 5 mentioned the “base rate” of a class, which corresponds to how well a classifier 

would perform by simply choosing that class for every instance. With such skewed 

domains the base rate for the majority class could be very high, so a report of 99.9% 

accuracy may tell us little about what data mining has really accomplished. 

Even when the skew is not so great, in domains where one class is more prevalent than 

another accuracy can be greatly misleading. Consider again our cellular-churn example. 

Let’s say you are a manager at MegaTelCo and as an analyst I report that our churn- 

prediction model generates 80% accuracy. This sounds good, but is it? My coworker 

reports that her model generates an accuracy of 37%. That’s pretty bad, isn’t it? 

You might say, wait—we need more information about the data. And you would be 

exactly right to do so (and would be engaging in data-analytic thinking). What do we 

need? Considering the line of discussion so far in this subsection, you might rightly say: 

we need to know what is the proportion of churn in the population we are considering. 

Let’s say you know that in these data the baseline churn rate is approximately 10% per 

month. Let’s consider a customer who churns to be a positive example, so within our 

population of customers we expect a positive to negative class ratio of 1:9. So if we simply 

classify everyone as negative we could achieve a base rate accuracy of 90%! 

Digging deeper, you discover that my coworker and I evaluated on two different datasets. 

This would not be suprising if we had not coordinated our data analysis efforts. My 

coworker calculated the accuracy on a representative sample from the population,  

whereas I created artificially balanced datasets for training and testing (both common 

practices). Now my coworker’s model looks really bad—she could have achieved 90% 

accuracy, but only got 37%. However, when she applies her model to my balanced data 

set, she also sees an accuracy of 80%. Now it’s really confusing. 

The bottom line is that accuracy simply is the wrong thing to measure. In this admittedly 

contrived example, my coworker’s model (call it Model A) achieves 80% accuracy on 

the balanced sample by correctly identifying all positive examples but only 30% of the 

negative examples. My model (Model B) does this, conversely, by correctly identifying 

all the negative examples but only 30% of the positive examples. 

Let’s look at these two models more carefully, using confusion matrices as a conceptual 

tool. In a training population of 1,000 customers, the confusion matrices are as follows. 

Recall that a model’s predicted classes are denoted Y and N. 

Table 7-2. Confusion matrix of A 

  churn not churn  



 

Y 500 200 

N 0 300 

Table 7-3. Confusion matrix of B 

  churn not churn  

Y 300 0 

N 200 500 

Figure 7-1 illustrates these classifications on a balanced population and on a represen‐ 

tative population. As mentioned, both models correctly classify 80% of the balanced 

population, but the confusion matrices and the figure show that they operate very dif‐ 

ferently. Classifier A often falsely predicts that customers will churn when they will not, 

while classifier B makes many opposite errors of predicting that customers will not  

churn when in fact they will. When applied to the original, unbalanced population of 

customers, model A’s accuracy declines to 37% while model B’s rises to 93%. This is a 

huge change. So which model is better? 
 



 

 

Figure 7-1. Two churn models, A and B, can make an equal number of errors on a bal‐ 

anced population used for training (top) but a very different number of errors when tes‐ 

ted against the true population (bottom). 

My model (B) now appears to be better than A because B seems to have greater perfor‐ 

mance on the population we care about—the 1:9 mix of customers we expect to see. But 

we still can’t say for sure because of another problem with accuracy: we don’t know how 

much we care about the different errors and correct decisions. This issue is the topic of 

the next section. 

Problems with Unequal Costs and Benefits 

Another problem with simple classification accuracy as a metric is that it makes no 

distinction between false positive and false negative errors. By counting them together, 

it makes the tacit assumption that both errors are equally important. With real-world 



 

domains this is rarely the case. These are typically very different kinds of errors with 

very different costs because the classifications have consequences of differing severity. 

Consider a medical diagnosis domain where a patient is wrongly informed he has cancer 

when he does not. This is a false positive error. The result would likely be that the patient 

would be given further tests or a biopsy, which would eventually disconfirm the initial 

diagnosis of cancer. This mistake might be expensive, inconvenient, and stressful for 

the patient, but it would not be life threatening. Compare this with the opposite error:  

a patient who has cancer but she is wrongly told she does not. This is a false negative. 

This second type of error would mean a person with cancer would miss early detection, 

which could have far more serious consequences. These two errors are very different,  

should be counted separately, and should have different costs. 

Returning to our cellular-churn example, consider the cost of giving a customer a re‐ 

tention incentive which still results in departure (a false positive error). Compare this  

with the cost of losing a customer because no incentive was offered (a false negative). 

Whatever costs you might decide for each, it is unlikely they would be equal; and the 

errors should be counted separately regardless. 

Indeed, it is hard to imagine any domain in which a decision maker can safely be in‐ 

different to whether she makes a false positive or a false negative error. Ideally, we should 

estimate the cost or benefit of each decision a classifier can make. Once aggregated,  

these will produce an expected profit (or expected benefit or expected cost) estimate for 

the classifier. 

Generalizing Beyond Classification 
We have been using classification modeling to illustrate many data science issues con‐ 

cretely. Most of these issues are applicable beyond classification. 

The general principle we’re developing here is that when we are applying data science 

to an actual application it is vital to return to the question: what is important in the  

application? What is the goal? Are we assessing the results of data mining appropriately 

given the actual goal? 

As another example, let’s apply this thinking to regression modeling rather than clas‐ 

sification. Say our data science team has to build a movie recommendation model. It 

predicts how much a given customer will like a given movie, which we will use to help 

us provide personalized recommendations. Let’s say each customer rates a movie by 

giving it one to five stars, and the recommendation model predicts how many stars a 



 

user will give an unseen movie. One of our analysts describes each model by reporting 

the mean-squared-error (or root-mean-squared-error, or R2, or whatever metric) for 

the model. We should ask: mean-squared-error of what? The analyst replies: the value 

of the target variable, which is the number of stars that a user would give as a rating for 

the movie. Why is the mean-squared-error on the predicted number of stars an appro‐ 

priate metric for our recommendation problem? Is it meaningful? Is there a better met‐ 

ric? Hopefully, the analyst has thought this through carefully. It is surprising how often 

one finds that an analyst has not, and is simply reporting some measure he learned about 

in a class in school. 

A Key Analytical Framework: Expected Value 
We now are ready to discuss a very broadly useful conceptual tool to aid data analytic 

thinking: expected value. The expected value computation provides a framework that  

is extremely useful in organizing thinking about data-analytic problems. Specifically, it 

decomposes data-analytic thinking into (i) the structure of the problem, (ii) the elements 

of the analysis that can be extracted from the data, and (iii) the elements of the analysis 

that need to be acquired from other sources (e.g., business knowledge of subject matter 

experts). 

In an expected value calculation the possible outcomes of a situation are enumerated.  

The expected value is then the weighted average of the values of the different possible 

outcomes, where the weight given to each value is its probability of occurrence. For 

example, if the outcomes represent different possible levels of profit, an expected profit 

calculation weights heavily the highly likely levels of profit, while unlikely levels of profit 

are given little weight. For this book, we will assume that we are considering repeated 

tasks (like targeting a large number of consumers, or diagnosing a large number of 

problems) and we are interested in maximizing expected profit.1 

The expected value framework provides structure to an analyst’s thinking (i) via the  

general form shown in Equation 7-1 . 

Equation 7-1. The general form of an expected value calculation 

EV = p(o1) · v(o1) + p(o2) · v(o2) + p(o3) · v(o3) ... 

Each oi is a possible decision outcome; p(oi) is its probability and v(oi) is its value. The 

probabilities often can be estimated from the data (ii), but the business values often need 

to be acquired from other sources (iii). As we will see in Chapter 11, data-driven mod‐ 

 

 

 
1. A course in decision theory would lead you into a thicket of interesting related issues. 



 

eling may help estimate business values, but usually the values must come from external 

domain knowledge. 

We now will illustrate the use of expected value as an analytical framework with two 

different data science scenarios. The two scenarios are often confused but it is vital to 

be able to distinguish them. To do so, recall the difference from Chapter 2 between the 

mining (or induction) of a model, and the model’s use. 

Using Expected Value to Frame Classifier Use 

In use, we have many individual cases for which we would like to predict a class, which 

may then lead to an action. In targeted marketing, for example, we may want to assign 

each consumer a class of likely responder versus not likely responder, then we could target 

the likely responders. Unfortunately, for targeted marketing often the probability of 

response for any individual consumer is very low—maybe one or two percent—so no 

consumer may seem like a likely responder. If we choose a “common sense” threshold 

of 50% for deciding what a likely responder is, we would probably not target anyone. 

Many inexperienced data miners are surprised when the application of data mining 

models results in everybody being classified as not likely responder (or a similar negative 

class). 

However, with the expected value framework we can see the crux of the problem. Let’s 

walk through a targeted marketing scenario.2 Consider that we have an offer for a prod‐ 

uct that, for simplicity, is only available via this offer. If the offer is not made to a con‐ 

sumer, the consumer will not buy the product. We have a model, mined from historical 

data, that gives an estimated probability of response pR() for any consumer whose 

feature vector description x is given as input. The model could be a classification tree 

or a logistic regression model or some other model we haven’t talked about yet. Now 

we would like to decide whether to target a particular consumer described by feature  

vector x. 

Expected value provides a framework for carrying out the analysis. Specifically, let’s  

calculate the expected benefit (or cost) of targeting consumer x: 

 
Expected benefit of targeting = pR() · vR + 1 - pR() · vNR 

 
where vR is the value we get from a response and vNR is the value we get from no response. 

Since everyone either responds or does not, our estimate of the probability of not re‐ 

sponding is just (1 - pR()). As mentioned, the probabilities came from the historical 

 

 

2. We use targeted marketing here, rather than the churn example, because the expected value framework  

actually reveals an important complexity to the churn example that we’re not ready to deal with. We will  

return to that later in Chapter 11 when we’re ready to deal with it. 



 

data, as summarized in our predictive model. The benefits vR and vNR need to be deter‐ 

mined separately, as part of the Business Understanding step (recall Chapter 2). Since 

a customer can only purchase the product by responding to the offer (as discussed 

above), the expected benefit of not targeting her conveniently is zero. 

To be concrete, let’s say that a consumer buys the product for $200 and our product- 

related costs are $100. To target the consumer with the offer, we also incur a cost. Let’s 

say that we mail some flashy marketing materials, and the overall cost including postage 

is $1, yielding a value (profit) of vR = $99 if the consumer responds (buys the product). 

Now, what about vNR, the value to us if the consumer does not respond? We still mailed 

the marketing materials, incurring a cost of $1 or equivalently a benefit of -$1. 

Now we are ready to say precisely whether we want to target this consumer: do we expect 

to make a profit? Technically, is the expected value (profit) of targeting greater than 

zero? Mathematically, this is: 

 
pR() · $99 - 1 - pR() · $1 > 0 

 
A little rearranging of the equation gives us a decision rule: Target a given customer x 

only if: 

 
pR() · $99 > 1 - pR() · $1 pR() > 

0.01 

With these example values, we should target the consumer as long as the estimated 

probability of responding is greater than 1%. 

This shows how an expected value calculation can express how we will use the model. 

Making this explicit helps to organize problem formulation and analysis. We will return 

to this in Chapter 11. Now, let’s move on to the other important application of the 

expected value framework, to organize our analysis of whether the model we have in‐ 

duced from the data is any good. 

Using Expected Value to Frame Classifier Evaluation 

At this point we want to shift our focus from individual decisions to collections of 

decisions. Specifically, we need to evaluate the set of decisions made by a model when 

applied to a set of examples. Such an evaluation is necessary in order to compare one  

model to another. For example, does our data-driven model perform better than the 

hand-crafted model suggested by the marketing group? Does a classification tree work 

better than a linear discriminant model for a particular problem? Do any of the models 

do substantially better than a baseline “model,” such as randomly choosing consumers 



 

to target? It is likely that each model will make some decisions better than the other 

model. What we care about is, in aggregate, how well does each model do: what is its 

expected value. 

 

Figure 7-2. A diagram of the expected value calculation. The Π and Σ refer to the mul‐ 

tiplication and summation in the expected value calculation. 

We can use the expected value framework just described to determine the best decisions 

for each particular model, and then use the expected value in a different way to compare 

the models. If we are to calculate the expected profit for a model in aggregate, each oi 

in Equation 7-1 corresponds to one of the possible combinations of the class we predict, 

and the actual class. We want to aggregate all the different possible cases: overall, when 

we decide to target consumers, what is the probability that they respond? What is the  

probability that they do not? What about when we do not target consumers, would they 

have responded? Fortunately, as you may recall, we already have the counts necessary 

to calculate all these—in the confusion matrix. Each oi corresponds to one cell of the 

confusion matrix. For example, what is the probability associated with the particular 

combination of a consumer being predicted to churn and actually does not churn? That 



 

would be estimated by the number of test-set consumers who fell into the confusion 

matrix cell (Y,n), divided by the total number of test-set consumers. 

Let’s walk through an entire expected profit calculation at the aggregate (model) level, 

in the process computing these probabilities. Figure 7-2 shows a schematic diagram of 

the expected value calculation in the context of model induction and evaluation. At the 

top left of the diagram, a training portion of a dataset is taken as input by an induction 

algorithm, which produces the model that we will evaluate. That model is applied to a 

holdout (test) portion of the data, and the counts for the different cells of the confusion 

matrix are tallied. Let’s consider a concrete example of a classifier confusion matrix in 

Table 7-4. 

Table 7-4. A sample confusion matrix with counts. 

  p n   

Y 56 7 

N 5 42 

Error rates 

When calculating expected values for a business problem, the analyst is often faced with 

the question: where do these probabilities actually come from? When evaluating a model 

on testing data, the answer is straightforward: these probabilities (of errors and correct 

decisions) can be estimated from the tallies in the confusion matrix by computing the  

rates of the errors and correct decisions. Each cell of the confusion matrix contains a 

count of the number of decisions corresponding to the corresponding combination of 

(predicted, actual), which we will express as count(h,a) (we use h for “hypothesized” 

since p is already being used). For the expected value calculation we reduce these counts 

to rates or estimated probabilities, p(h,a). We do this by dividing each count by the total 

number of instances: 

 
p(h , a) = count(h , a) / T 

 
Here are the calculations of the rates for each of the raw statistics in the confusion matrix. 

These rates are estimates of the probabilities that we will use in the expected value  

computation of Equation 7-1. 

T = 110 

p(Y,p) = 56/110 = 0.51 p(Y,n) = 7/110 = 0.06 

p(N,p) = 5/110 = 0.05 p(N,n) = 42/110 = 0.38 

 

Costs and benefits 



 

To compute expected profit (recall Equation 7-1), we also need the cost and benefit 

values that go with each decision pair. These will form the entries of a cost-benefit matrix 

with the same dimensions (rows and columns) as the confusion matrix. However, the  

cost-benefit matrix specifies, for each (predicted,actual) pair, the cost or benefit of 

making such a decision (see Figure 7-3). Correct classifications (true positives and true 

negatives) correspond to the benefits b(Y,p) and b(N, n), respectively. Incorrect classi‐ 

fications (false positives and false negatives) correspond to the “benefit” b(Y,n) and b(N, 

p), respectively, which may well actually be a cost (a negative benefit), and often are  

explicitly referred to as costs c(Y, n) and c(N, p). 

 

Figure 7-3. A cost-benefit matrix. 

While the probabilities can be estimated from data, the costs and benefits often cannot. 

They generally depend on external information provided via analysis of the conse‐ 

quences of decisions in the context of the specific business problem. Indeed, specifying 

the costs and benefits may take a great deal of time and thought. In many cases they 

cannot be specified exactly but only as approximate ranges. Chapter 8 will return to 

address what we might do when these values are not known exactly. For example, in 

our churn problem, how much is it really worth us to retain a customer? The value  

depends on future cell phone usage and probably varies a great deal between customers. 

It may be that data on customers’ prior usage can be helpful in this estimation. In many 

cases, average estimated costs and benefits are used rather than individual-specific costs 

and benefits, for simplicity of problem formulation and calculation. Therefore, we will 

ignore customer-specific cost/benefit calculations for the rest of our example, but will 

return to it in Chapter 11. 

So, let’s return to our targeted marketing example. What are the costs and benefits? We 

will express all values as benefits, with costs being negative benefits, so the function we’re 

specifying is b(predicted, actual). For simplicity, all numbers will be expressed as dollars. 

• A false positive occurs when we classify a consumer as a likely responder and there‐ 

fore target her, but she does not respond. We’ve said that the cost of preparing and 



 

mailing the marketing materials is a fixed cost of $1 per consumer. The benefit in 

this case is negative: b(Y, n) = –1. 

• A false negative is a consumer who was predicted not to be a likely responder (so 

was not offered the product), but would have bought it if offered. In this case, no 

money was spent and nothing was gained, so b(N, p) = 0. 

• A true positive is a consumer who is offered the product and buys it. The benefit in 

this case is the profit from the revenue ($200) minus the product-related costs 

($100) and the mailing costs ($1), so b(Y, p) = 99. 

• A true negative is a consumer who was not offered a deal and who would not have 

bought it even if it had been offered. The benefit in this case is zero (no profit but 

no cost), so b(N, n) = 0. 

These cost-benefit estimations can be summarized in a 2 × 2 cost-benefit matrix, as in 

Figure 7-4. Note that the rows and columns are the same as for our confusion matrix, 

which is exactly what we’ll need to compute the overall expected value for the classifi‐ 

cation model. 

 

Figure 7-4. A cost-benefit matrix for the targeted marketing example. 

Given a matrix of costs and benefits, these are multiplied cell-wise against the matrix 

of probabilities, then summed into a final value representing the total expected profit.  

The result is: 

 
Expected profit = p(, ) · b(, ) + p(, ) · b(, ) + 

p(, ) · b(, ) + p(, ) · b(, ) 

 
Using this equation, we can now compute and compare the expected profits for various 

models and other targeting strategies. All we need is to be able to compute the confusion 

matrices over a set of test instances, and to generate the cost-benefit matrix. 

This equation is sufficient for comparing classifiers, but let’s continue along this path a 

little further, because an alternative calculation of this equation is often used in practice. 

This alternative view is closely related to some techniques used to visualize classifier 

performance (see Chapter 8). Furthermore, by examining the alternative formulation 

we can see exactly how to deal with the model comparison problem we introduced at 



 

the beginning of the chapter—where one analyst had reported performance statistics 

over a representative (but unbalanced) population, and another had used a class- 

balanced population. 

A common way of expressing expected profit is to factor out the probabilities of seeing 

each class, often referred to as the class priors. The class priors, p(p) and p(n), specify 

the likelihood of seeing positive and negative instances, respectively. Factoring these  

out allows us to separate the influence of class imbalance from the fundamental pre‐  

dictive power of the model, as we will discuss in more detail in Chapter 8. 

A rule of basic probability is: 

 
p(x, y) = p(y) · p(x | y) 

 
This says that the probability of two different events both occurring is equal to the  

probability of one of them occurring times the probability of the other occurring if we 

know that the first occurs. Using this rule we can re-express our expected profit as: 

 
Expected profit   = p( | ) · p() · b(, ) + p( | ) · p() · b(, ) + 

p( | ) · p() · b(, ) + p( | ) · p() · b(, ) 

 
Factoring out the class priors p(y) and p(n), we get the final equation: 

 
Equation 7-2. Expected profit equation with priors p(p) and p(n) factored. 

 
Expected profit   = p() · p( | ) · b(, ) + p( | ) · c(, ) + 

p() · p( | ) · b(, ) + p( | ) · c(, ) 

 
From this mess, notice that we now have one component (the first one) corresponding 

to the expected profit from the positive examples, and another (the second one) corre‐ 

sponding to the expected profit from the negative examples. Each of these is weighted 

by the probability that we see that sort of example. So, if positive examples are very rare,  

their contribution to the overall expected profit will be correspondingly small.3 In this 

alternative formulation, the quantities p(Y|p), p(Y|n), etc. correspond directly to the 

true positive rate, the false positive rate, etc., that also can be calculated directly from 

the confusion matrix (see “Sidebar: Other Evaluation Metrics” on page 203). 
 

 

 

 

 



 

3. This could be extended to any number of classes, though to keep things simple(r) we’ll use two.Here again is 
our sample confusion matrix in Table 7-5. 

Table 7-5. Our sample confusion matrix (raw counts) 

  p n   

Y 56 7 

N 5 42 

Table 7-6 shows the class priors and various error rates we need. 

Table 7-6. The class priors and the rates of true positives, false positives, and so on. 

T = 110 

P = 61 N = 49 

p(p) = 0.55 p(n) = 0.45 

tp rate = 56/61 = 0.92 fp rate = 7/49 = 0.14 

fn rate = 5/61 = 0.08 tn rate = 42/49 = 0.86 

 

Returning to the targeted marketing example, what is the expected profit of the model 

learned? We can calculate it using Equation 7-2: 

 
expected profit   = p() · p( | ) · b(, ) + p( | ) · c(, ) + 

p() · p( | ) · b(, ) + p( | ) · c(, ) 

= 0.55 · 0.92 · b(, ) + 0.08 · b(, ) + 0.45 · 0.86 

· b(, ) + 0.14 · p(, ) 

= 0.55 · 0.92 · 99 + 0.08 · 0 + 

0.45 · 0.86 · 0 + 0.14 · - 1 

= 50.1 - 0.063 

≈ $50.04 

 
This expected value means that if we apply this model to a population of prospective  

customers and mail offers to those it classifies as positive, we can expect to make an 

average of about $50 profit per consumer. 

We now can see one way to deal with our motivating example from the beginning of 

the chapter. Instead of computing accuracies for the competing models, we would com‐ 



 

pute expected values. Furthermore, using this alternative formulation, we can compare 

the two models even though one analyst tested using a representative distribution and 

the other tested using a class-balanced distribution. In each calculation, we simply can 

replace the priors. Using a balanced distribution corresponds to priors of p(p) = 0.5 and 

p(n) = 0.5. The mathematically savvy reader is encouraged to convince herself that the 

other factors in the equation will not change if the test-set priors change. 

To close this section on estimated profit, we emphasize two pitfalls that 

are common when formulating cost-benefit matrices: 

• It is important to make sure the signs of quantities in the cost- 

benefit matrix are consistent. In this book we take benefits to be 

positive and costs to be negative. In many data mining studies, 

the focus is on minimizing cost rather than maximizing profit, so 

the signs are reversed. Mathematically, there is no difference. 

However, it is important to pick one view and be consistent. 

• An easy mistake in formulating cost-benefit matrices is to “dou‐ 

ble count” by putting a benefit in one cell and a negative cost for 

the same thing in another cell (or vice versa). A useful practical 

test is to compute the benefit improvement for changing the de‐ 

cision on an example test instance. 

For example, say you’ve built a model to predict which accounts 

have been defrauded. You’ve determined that a fraud case costs 

$1,000 on average. If you decide that the benefit of catching fraud 

is therefore +$1,000/case on average, and the cost of missing fraud 

is -$1,000/case, then what would be the improvement in benefit 

for catching a case of fraud? You would calculate: 

b(Y,p) - b(N,p) = $1000 - (-$1000) = $2000 

But intuitively you know that this improvement should only be 

about $1,000, so this error indicates double counting. The solu‐ 

tion is to specify either that the benefit of catching fraud is $1,000 

or that the cost of missing fraud is -$1,000, but not both. One 

should be zero.+ FP), which is the accuracy over the cases 

predicted to be positive. The F-measure is the harmonic mean 

of precision and recall at a given point, and is: 

 
 precision · recall 

precision + recall 

 
Practitioners in many fields such as statistics, pattern recognition, and epidemiology 

speak of the sensitivity and specificity of a classifier: 

 
Sensitivity = TN / (TN + FP) = True negative rate = 1 - False positive rate 

Specificity = TP / (TP + FN ) = True positive rate 

F-measure = 2 · 



 

P + N 

You may also hear about the positive predictive value, which is the same as precision. 

Accuracy, as mentioned before, is simply the count of correct decisions divided by the 

total number of decisions, or: 

 

Accuracy =
 TP + TN 

 

 
Swets (1996) lists many other evaluation metrics and their relationships to the confusion 

matrix. 

 

Evaluation, Baseline Performance, and Implications for 
Investments in Data 
Up to this point we have talked about model evaluation in isolation. In some cases just 

demonstrating that a model generates some (nonzero) profit, or a positive return on 

investment, will be informative by itself. Nevertheless, another fundamental notion in 

data science is: it is important to consider carefully what would be a reasonable baseline 

against which to compare model performance. This is important for the data science team 

in order to understand whether they indeed are improving performance, and is equally 

important for demonstrating to stakeholders that mining the data has added value. So,  

what is an appropriate baseline for comparison? 

The answer of course depends on the actual application, and coming up with suitable  

baselines is one task for the business understanding phase of the data mining process. 

However, there are some general principles that can be very helpful. 

For classification models it is easy to simulate a completely random model and measure 

its performance. The visualization frameworks we will discuss in Chapter 8 have natural 

baselines showing what random classification should achieve. This is useful for 

verydifficult problems or initial explorations. Comparison against a random model 

estab‐ lishes that there is some information to be extracted from the data. 

However, beating a random model may be easy (or may seem easy), so demonstrating 

superiority to it may not be very interesting or informative. A data scientist will often 

need to implement an alternative model, usually one that is simple but not simplistic, 

in order to justify continuing the data mining effort. 

In Nate Silver’s book on prediction, The Signal and the Noise (2012), he mentions the 

baseline issue with respect to weather forecasting: 

There are two basic tests that any weather forecast must pass to demonstrate its merit: It 

must do better than what meteorologists call persistence: the assumption that the weather 

will be the same tomorrow (and the next day) as it was today. It must also beat climatology, 

the long-term historical average of conditions on a particular date in a particular area. 



 

In other words, weather forecasters have two simple—but not simplistic—baseline 

models that they compare against. One (persistence) predicts that the weather tomorrow 

is going to be whatever it was today. The other (climatology) predicts whatever the  

average historical weather has been on this day from prior years. Each model performs 

considerably better than random guessing, and both are so easy to compute that they 

make natural baselines of comparison. Any new, more complex model must beat these. 

What are some general guidelines for good baselines? For classification tasks, one good 

baseline is the majority classifier, a naive classifier that always chooses the majority class  

of the training dataset (see Note: Base rate in “Holdout Data and Fitting Graphs” on 

page 113). This may seem like advice so obvious it can be passed over quickly, but it is 

worth spending an extra moment here. There are many cases where smart, analytical  

people have been tripped up in skipping over this basic comparison. For example, an 

analyst may see a classification accuracy of 94% from her classifier and conclude that it 

is doing fairly well—when in fact only 6% of the instances are positive. So, the simple 

majority prediction classifier also would have an accuracy of 94%. Indeed, many be‐ 

ginning data science students are surprised to find that the models they build from the  

data simply predict everything to be of the majority class. Note that this may make sense 

if the modeling procedure is set up to build maximum accuracy models—it may be hard 

to beat 94% accuracy. The answer, of course, is to apply the central idea of this chapter: 

consider carefully what is desired from the data mining results. Maximizing simple 

prediction accuracy is usually not an appropriate goal. If that’s what our algorithm is 

doing, we’re using the wrong algorithm. For regression problems we have a directly 

analogous baseline: predict the average value over the population (usually the mean or 

median). 

In some applications there are multiple simple averages that one may want to combine. 

For example, when evaluating recommender systems that internally predict how many 

“stars” a particular customer would give to a particular movie, we have the average  

number of stars a movie gets across the population (how well liked it is) and the average 

number of stars a particular customer gives to movies (what that customer’s overall bias 

is). A simple prediction based on these two may do substantially better than using one 

or the other in isolation. 

Moving beyond these simple baseline models, a slightly more complex alternative is a 

model that only considers a very small amount of feature information. For example,  

recall from Chapter 3 our very first example of a data mining procedure: finding in‐ 

formative variables. If we find the one variable that correlates best with the target, we 

can build a classification or regression model that uses just that variable, which gives 

another view of baseline performance: how well does a simple “conditional” model 

perform? “Conditional” here means that it predicts differently based on, or conditioned 

on, the value of the feature(s). The overall population average is therefore sometimes 

called the “unconditional” average. 

One example of mining such single-feature predictive models from data is to use tree 

induction to build a “decision stump” — a decision tree with only one internal node, 



 

the root node. A tree limited to one internal node simply means that the tree induction 

selects the single most informative feature to make a decision. In a well-known paper 

in machine learning, Robert Holte (1993) showed that decision stumps often produce  

quite good baseline performance on many of the test datasets used in machine learning 

research. A decision stump is an example of the strategy of choosing the single most 

informative piece of information available (recall Chapter 3) and basing all decisions 

on it. In some cases most of the leverage may be coming from a single feature, and this 

method assesses whether and to what extent that is the case. 

This idea can be extended to data sources, and relates to our fundamental principle from 

Chapter 1 that we should regard data as an asset to be invested in. If you are considering 

building models that integrate data from various sources, you should compare the result 

to models built from the individual sources. Often there are substantial costs to acquir‐ 

ing new sources of data. In some cases these are actual monetary costs; in other cases 

they involve commitments of personnel time for managing relationships with data pro‐ 

viders and monitoring data feeds. To be thorough, for each data source the data science 

team should compare a model that uses the source to one that does not. Such compar‐ 

isons help to justify the cost of each source by quantifying its value. If the contribution 

is negligible, the team may be able to reduce costs by eliminating it. 

Beyond comparing simple models (and reduced-data models), it is often useful to im‐ 

plement simple, inexpensive models based on domain knowledge or “received wisdom” 

and evaluate their performance. For example, in one fraud detection application it was 

commonly believed that most defrauded accounts would experience a sudden increase 

in usage, and so checking accounts for sudden jumps in volume was sufficient for 

catching a large proportion of fraud. Implementing this idea was straightforward and 

it provided a useful baseline for demonstrating the benefit of data mining. (This essen‐ 

tially was a single-feature predictive model.) Similarly, an IBM team that used data 

mining to direct sales efforts chose to implement a simple sales model that prioritized 

existing customers by the size of previous revenue and other companies by annual sales. 
4 They were able to demonstrate that their data mining added significant value beyond 

this simpler strategy. Whatever the data mining group chooses as a baseline for com‐ 

parison, it should be something the stakeholders find informative, and hopefully per‐ 

suasive. 
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